If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2s^2=10
We move all terms to the left:
2s^2-(10)=0
a = 2; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·2·(-10)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*2}=\frac{0-4\sqrt{5}}{4} =-\frac{4\sqrt{5}}{4} =-\sqrt{5} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*2}=\frac{0+4\sqrt{5}}{4} =\frac{4\sqrt{5}}{4} =\sqrt{5} $
| 8(9x+10)-6=6x-3/2(-6x+2) | | 1u=4 | | 14x-13=180+8x+5=360 | | 7+5=2y+10 | | 85=-5(1+6x | | y/4-16=14 | | Y=(7x+100) | | Y=(x+100) | | (x+2)(x+3)(x+10)(x+11)=180 | | (0=7x-21 | | 3(p+17)=10 | | y=4(-1.6)-3 | | 124.50=20(x+4)+3/4x+ | | (6b+7)=(7b-8) | | (3p+6)=(4p+7) | | (1/4)(x+2)+5=-x | | y^2-26y+81=0 | | x/13-9=4 | | -11/2x+2=4 | | 26=v/5-13 | | y-1.7=8.69 | | 3k+18=7k-6 | | m=-8/(-2/12) | | 93-v=162 | | x+2+72=90 | | 124x0.25=31 | | 5/17=19/x+3 | | 150x+100x+(250-80x)=540 | | 3.4x-2.6=x-0.9 | | -13x=19 | | -6x/1=-2/7x | | -2=3s |